
EX
A

M
PL

EValidation of Standard Interfaces for Machine Control*

F.M. Proctor, J. Michaloski,
W. Shackleford, and S. Szabo

National Institute of Standards and Technology
Gaithersburg, MD 20899

* No approval or endorsement of any commercial product by the National Institute of Standards and Technology is
intended or implied. Certain commercial equipment, instruments, or materials are identified in this report in order to
facilitate understanding. Such identification does not imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best
available for the purpose.
This publication was prepared by United States Government employees as part of their official duties and is, therefore,
a work of the U.S. Government and not subject to copyright.

ABSTRACT

Open architecture controllers offer a multitude of benefits to users
of machine tools, robots, and coordinate measuring machines,
ultimately reducing the life-cycle costs of installing, operating,
and maintaining manufacturing equipment. Aside from those
benefits resulting from basing a controller on common operating
systems and computing platforms, the main feature of an open
architecture is the public availability of interfaces to controller
functionality. These interfaces allow third parties who are not
associated with the original equipment manufacturers to provide
enhancements to the functionality of the machine. Efforts to
standardize the interfaces to open architecture machine tool
controllers are underway both in the United States. and abroad. In
the United States, the Department of Energy and the National
Institute of Standards and Technology have cooperatively
undertaken this standards effort. One of the most important
aspects of this program is the validation of interfaces on actual
machinery in production applications. The goal of this validation
process is to ensure that the interface specification is broad
enough to encompass a significant portion of manufacturing
applications, while still being practical to implement. This paper
explores the problems resulting from defining interfaces to
general controller functionality, when faced with the realities of
validating the interfaces on controllers with specific operating
systems, computing platforms, and control components.

KEYWORDS: open architecture controller, motion
control, standards

1. INTRODUCTION

In the early 1990s, the Manufacturing Engineering
Laboratory of the National Institute of Standards and
Technology (NIST) began the Enhanced Machine
Controller (EMC) program to develop a modular definition
of components for machine control [1].

The intent was to document the interfaces to these
modules to the degree that would allow independent third
parties to provide interoperable products. The
development of this modular architecture grew out of
NIST’s experience developing controllers based on the
Real-time Control System (RCS) architecture which has
evolved within NIST over many years [2]. NIST and the
Department of Energy national laboratories have
combined their efforts in this area under the auspices of
the Technologies Enabling Agile Manufacturing (TEAM)
program, and are undertaking a formal review of the
interface specification that has resulted from recent
implementations of interface-based controllers [3]. This
review also includes researchers from General Motors
and the University of Michigan. A broader review is
anticipated within the EMC Consortium, established by
NIST in January 1996 to formalize a three-year review of
controller implementations based on these interfaces.

2. INTERFACE DESCRIPTION

The development of the EMC architecture, shown in
Figure 1, was the first step toward defining an interface
specification. In this figure, boxes indicate the individual
modules for which interfaces have been defined and
validated. These include Task Sequencing, Trajectory
Generation, Servo Control, and Discrete Input/Output.
The Operator Interface, shown at the side, does not
require any specific interfaces itself, but can be
developed using only the interfaces provided by the other
modules. Implementations of the operator interface need
only avail themselves of messages to the controller and
data provided by the controller: no additional interfaces
are required to be defined in order to incorporate an
operator interface into an EMC controller.

EX
A

M
PL

E

Servo
Control

Trajectory
Generation

Task
Sequencing

Discrete
Input/Output

Encoders
Valves and
solenoids

Motors

Limit switches

Servo
Control

Tach

Operator
Interface

Factory
Network

Figure 1. The EMC Architecture. Interfaces for
Task Sequencing, Trajectory Generation, and
Servo Control were targeted during the validation
process.

The interface specifications are formalized in the
C++ programming language, using header files. The
specification consists of messages into each module, and
world model data provided by each module. Both the
messages and world model data are implemented using
C++ classes.

Class definitions alone are not sufficient to describe
the interfaces. The specification needed to include the
expected behavior of the control modules in response to
each control message, and their effect on the world
model of each control module. This information is
provided in manual-style pages accompanying the C++
class definitions, using Hypertext Markup Language
(HTML) format.

Supplementing the message specification is a model
of data transfer, the Neutral Manufacturing Language
(NML) [4]. This model provides for “mailboxes” of data,
with one or more readers and writers. Each module is
modeled as a cyclic process, which reads its input
command from its supervisor, reads the status of its
subordinates (or sensors), and computes and sends outputs
to its subordinates (or actuators).

The interface specification is divided into two parts:
commands that each module will perform, and status that
each module will maintain. Both commands and status
are derived from the NML message base class, and
require a unique identifier and zero or more data fields
representing the parameters to the command or fields in
the status. During the development of the specification,
the intent was to analyze the general requirements of
each module in terms of which commands it should be

responsible for carrying out, and what world model status
it should be responsible for maintaining. Ideally, the
specification would be complete enough to never require
modifications. In the case of the Servo Control module, a
literature survey conducted over a period of years resulted
in a cataloguing of 62 algorithms, and a generalization of
an interface to this module that would support
implementation of the servo control function with any of
these algorithms. However, no matter how
comprehensive such a survey, new algorithms will
inevitably arise which require input data or provide
output data that are not available in the interface.
Because of this, extensions to the interfaces are
anticipated. Indeed, the need for extensions was
evidenced during several of the validation tests discussed
in subsequent sections of this paper.

3. SUPPORT INFRASTRUCTURE

A central problem faced when developing the interfaces
was eliminating suppositions for computing platforms,
operating systems, and programming languages. Already
one can see that the C++ form of the interfaces presumes
a programming language. Vendors of modules (toward
whom these interfaces are aimed) need to provide the
command initiation functions and world model access
functions for the platforms the vendors have selected.
This does not prevent developers from using another
language for the implementation (e.g., the graphical user
interface was coded in Microsoft Visual Basic in this
case), but it does require that the external interfaces be
C++-linkable.

The picture is complicated when considering how
one assembles a system with components that provide
these interfaces. For example, as seen in Figure 1, the
Trajectory Generator module supervises the Servo Control
module, typically generating points in a world coordinate
system and sending them to the Servo Control
subordinate. However, the Trajectory Generator cannot,
in general, call functions provided by the Servo
Controller, since the Trajectory Generator may be running
on a different computer than the Servo Controller.

This problem is one aspect of the more general
configuration problem, which leads to the question,
“What services can be expected in an open architecture
controller that allow components to interoperate?” Aside
from a vendor’s need to access memory, disk files,
timers, and other operating system resources, there is
more required from the support infrastructure as the
example above illustrates.

Because we needed to implement controllers for
various machines to embark on the validation effort, we
required some particular support infrastructure. We used
the NIST RCS Library, which has been ported to a
variety of computing platforms, and directly supports the
RCS methodology for implementing real-time control
systems by providing a uniform programming interface to
communication, timing, shared memory, and mutual
exclusion primitives. However, by selecting this library,
we sidestepped an important problem: which support

EX
A

M
PL

Einfrastructure should be presumed (and indeed
accompany) the interface specification? Architectures
exist which can serve the purpose, such as the Common
Object Request Broker Architecture (CORBA) from the
Object Management Group, but requiring a particular
infrastructure greatly constrains the potential spectrum of
applications. Resolving this problem was outside the
scope of this effort.

3.1. Validation Tests

The interface validation tests were conducted in testbeds
at NIST in Gaithersburg, Maryland and at the General
Motors Powertrain facility in Pontiac, Michigan. At
NIST, the testbed consisted of a UNIX workstation
simulation for initial development, and a two-computer
controller for run-time tests on a desktop milling machine
(minimill). The graphical user interface ran on Microsoft
Windows on the first computer, and the real-time
controller ran on a UNIX operating system on the second
computer. Communication between the two took place
via ethernet.

This is not a full paper. This is only an example of
how to produce your camera-ready paper for the
ISIC/CIRA/ISAS ‘98 conference.

4. REFERENCES

[1] Proctor, F. M., and Michaloski, J., “Enhanced
Machine Controller Architecture Overview,” NIST
Internal Report 5331, December 1993.

[2] Albus, J. S., “Outline for a Theory of Intelligence,”
IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 21, No. 3, May/June 1991.

[3] Shackleford, W., and Proctor, F. M., “The Real-time
Control System Library, Internet Location:
http://isd.cme.nist.gov/ ~shackle/rcslib/

[4] Object Management Group, “What is CORBA?,”
Internet Location: http://ruby. omg.org/corba.htm

